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Abstract

Several measurement methods of chaos dynamics were employed to analyze differential pressure fluctuations of two-

phase flow through a T-junction with the aim to make clear the two-phase flow behavior splitting at a T-junction. These

results may be significant for better understanding the flow structure and also for establishing valid models different

from conventional viewpoints. These methods included: power spectral density and Hurst exponent, Lyapunov ex-

ponent, correlation dimension, pseudo-phase-plane trajectory. The experimental test section is a symmetrical and

vertical impacting T-junction with 15 mm inner diameter for the main tube and two horizontal branches. Three kinds of

flow pattern including bubble flow, churn flow and annular flow in the inlet tube, were investigated by detecting time

series of differential pressure. It is demonstrated that two-phase flow splitting at a T-junction is a complicated nonlinear

dynamic system. The Hurst exponents were larger than 0.5 showing that the flow behaviors studied are partly chaotic.

The largest Lyapunov exponent greater than zero confirms the chaotic feature of two-phase flow at a T-junction in

quality. Correlation dimensions were used to quantify the identified chaotic behavior.

� 2003 Elsevier Science Ltd. All rights reserved.
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1. Introduction

T-junctions are commonly used in distributing two-

phase flow by piping networks. These networks are es-

sential components of many facilities in the power and

process industries, such as steam power plants, boiling-

water and pressured water nuclear reactors and a wide

variety of chemical and petroleum applications. Un-

derstanding the behavior of two-phase flow through a

T-junction is extremely important since it can have sig-

nificant effects on the operation, maintenance and effi-

ciency of all components downstream from the junction.

In the past years, scientific research on behaviors of

two-phase flow through a T-junction has been mainly

concentrated on phase distribution and the pressure

drop. Four state-of-the-art reviews [1–5] summarized the

research efforts in the recent literature excellently. These

research efforts have shown that the phases are not

distributed evenly at the junction and the pressure drops

associated with two-phase flow are significantly com-

plicated with much higher magnitudes comparing to

single-phase. If we address only the research on the

pressure drop, a lot of researchers in the past have de-

voted their efforts to experiments and modeling. Saba

and Lahey [6] conducted experiments with air–water

through a horizontal T-junction and developed physi-

cally-based empirical model to predict pressure drop for

both DP13 (pressure drop from inlet 1 to outlet 3 of the
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junction) and DP12 (pressure drop from inlet 1 to outlet 2

of the junction). The model, however, is only valid for

small conduits and for mass flow extraction ratio greater

than 0.3, where W1 and W3 are the inlet and branch mass

flow rates. Reimann and Seeger [7] measured the pres-

sure drop DP13 and DP12 for air–water and steam water

through several kinds of T-junction. They also estab-

lished available models, and the agreement between the

model and the experiments is good for the horizontal

downward branch but bad for upward branch flow.

Hwang and Lahey [8] conducted experiments with air–

water for three horizontal junctions (T-junction, 45�
Y-junction, and 135� Y-junction). A phenomenological

model was developed basing on the idea of dividing

streamlines, and good consistence was obtained between

the model and experiment data. Ballyk et al. [9] re-

formed experiments with steam-water annular inlet flow

in a horizontal T-junction. The pressure change DP12
was modeled using an axial momentum balance at the

junction. DP13 was modeled using a balance of me-

chanical energy for the branching flow, which consisted

of reversible and irreversible components. Ruell et al.

[10] presented experimental data for pressure drops of

air–water mixture at a horizontal T-junction. They made

comparisons between their data and existing models.

Excellent summary was proposed from these compari-

sons. Walters et al. [11] reported their experimental

results on pressure drop of air–water in two reduced T-

junctions. They concluded that, for DP12, the separated
flow model by Foude and Rhodes [12] gave the best

overall predictions for all inlet flow patterns, except slug

flow. For DP13, the separated flow model proposed by [6]

gave the overall predictions for both DP12 and DP13 test
sections.

From the literature, we may say that few of the in-

vestigations deal with dynamic behaviors. Although the

idealized case of the true stead-state will probably have

to be well understood before the more complicated case

can be considered, the neglect of the time-dependent

behaviors of these parameters is acknowledged to be a

departure from the physical reality [13,14]. So the ob-

jective of the present research is to understand the dy-

namic behaviors of two-phase flow through a T-junction

by analyzing the time-dependent differential pressure

signal with nonlinear dynamic methods. Although the

intensity of fluctuation of two-phase flow through a T-

junction has been analyzed by statistical methods in [15],

it is still necessary to know the system complexity and

configuration by nonlinear analysis. Furthermore, an

attempt to apply chaos theory for the system of two-

phase flow splitting at T-junctions has been made. Sev-

eral measurement methods that are used in chaos theory

such as Hurst dimensions, Lyapunov exponents, pseu-

do-phase-plane trajectory, power spectral density (PSD)

function and correlation dimensions were employed on

various inlet flow patterns. Since slug flow was not ob-

served under the present experimental conditions, only

bubble flow, churn flow and annular flow were discussed

in the present paper.

2. Experimental apparatus and measurements

A schematic diagram of the two-phase flow through

T-junction loop is shown in Fig. 1. The air, before en-

tering the mixing room, was passed through a filter,

pressure controller, and a set of rotameters (OMEGA

with a combined range of 0.05–500 l/min) for large and

Nomenclature

A cross-sectional flow area (m2)

C correlation integral

D inlet diameter (m); correlation dimension

H Hurst exponent

JG superficial gas velocity (m)

JL superficial liquid velocity (m)

l distance in the phase space

M embedding dimension

N number of samples

DP12 pressure drop from inlet 1 to outlet 2 of the

junction (mm H2O)

DP13 pressure drop from inlet 1 to outlet 3 of the

junction (mm H2O)

R difference between the maximum and mini-

mum value of T
S standard deviation

T time series of cumulated value

W mass flow rate (kg/s)

WG gas mass flow rate (kg/s)

WL liquid mass flow rate (kg/s)

X quality (¼ WG=WL)

x measured value

�xx mean value

Greek symbols

k Lyapunov exponent

s time lag (s)

H Heaviside function

q density (kg/m3)

Subscripts

1, 2, 3 inlet 1, outlet 2, and outlet 3 of the T-junc-

tion, respectively (Fig. 2)

l largest
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small range, whilst the water was supplied from the

faucet passed through a filter and a rotameter (OMEGA

with a range of 0–2 l/min). The mixing room consisted of

an annular section surrounding a porous wall section.

Water enters the room from the periphery whilst the air

passes up from the middle. The vertical inlet tube up-

stream of the tee was 1.5 m high, which provided a

length/hydraulic diameter ratio of 100. This length was

sufficient to ensure that relatively developed air–water

two-phase flow entered the T-junction. Two of the

horizontal side branches were 1.7 m long. The vertical

T-junction and the connecting tubes, inner diameters of

which were 15 mm, were constructed of acrylic resin to

permit visual and photographic observation. The out-

side of the T-shaped block has a square cross section to

minimize the refraction problems during the observation

of the flow. All rotameters for air and water were cali-

brated and compared with the manufacturer�s calibra-
tion. Typical deviations between the two calibrations

were found to be within �2% with a maximum of �5%
at the lowest flow rates.

Pressure drop DP13 (between inlet 1 and to outlet 3)

and DP12 (between inlet 1 and outlet 2) were obtained by
Validyne DP15, differential transducer with maximum

range of ��225 kg/cm2 and a Validyne CD-280 pressure

demodulator. Output from the pressure transducers was

fed into the data-acquisition system in the form of a DC

voltages signal (range �12.29 V). An appropriate cali-

bration equation was then used to convert the voltages

into differential pressure. Because of the extreme sensi-

tivity of these measurements, the calibration of the

transducer was repeated several times during testing.

Fig. 2 shows the test section. Pressure taps were em-

ployed to connect differential transducer with test tube.

At each tap location, a 1mm hole was drilled through

the tube wall, and short pieces of tubing were then bent

for connecting the taps to the pressure measurement

system. Special care was taken in drilling and polishing

the taps to ensure no burrs protruded into the flow area.

The tubes between tap and transducer were purged be-

fore each test to ensure that the lines were free of air.

Gas flow rate at the branch outlet was measured by a

hot-wire anemometer sampled simultaneously with dif-

ferential pressure waveform. Both of the gas flow rate

signal and differential pressure signal were obtained

from samples taken over 60 s at a rate of 200 samples/s.

Two high-speed video cameras were employed for visual

observation. One was set at 1000 frames/s to record

the behavior of the splitting flow at center area of the

T-junction. The other was set at 500 frames/s to get

the behavior of two-phase flow in branch tube. Both of

the videos were recorded simultaneously with differential

pressure signal and gas flow rate signal. About 30 min

should be waited before each test run to reach the steady

state. Water flow rate at the branch outlet was measured

by weighting timed efflux. A steady interface in the

separator was maintained while measurement was exe-

cuted.

Mass balance errors were calculated for both phases

as the percentage deviation between the inlet flow rate

and the sum of the outlet flow rates from two separators.

For air, the mass balance was maintained within �10%
in all test runs, and within �5% for 80% of the test runs.

For water, the mass balance was always within �4%,
and for 95% of the test runs, the balance was within

�3%.
Phase distribution characteristics and fluctuation

characteristics at a T-junction were conducted with this

apparatus. The typical results can be seen in Fig. 3,

which shows some of the typical experimental results on

characteristics of phase distribution and on charact-

eristics of fluctuation in Fig. 4. The test results were

described [15] in detail. So only the brief outline is given

here. In the experiments concerning Fig. 4, a statistical

Inlet

W1, x1

Outlet 3

W3, x3

Outlet 2

W2, x2

D1

D3
D2

P12 P13∆∆

Fig. 2. Test section.Fig. 1. Schematic diagram of experimental apparatus: (1)

compressor (2) air flowmeters (3) filter (4) water flowmeter (5)

mixingroom (6) T-junction (7) differential pressure sensor (8)

high speed video (9) separator (10) hot wire anemometer.
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analysis based on root mean square (RMS) was applied

to temporal differential pressure signals and gas flow

rate signals. The effects of the extraction flow ratio and

the gas and liquid superficial velocity upstream on

fluctuation characteristics of gas–liquid two-phase flow

splitting at the T-junction were investigated in detail. It

was found that there is a wider fluctuation in both dif-

ferential pressure and gas flow rate downstream at every

extraction ratio (W3=W1) and the fluctuation intensity

increases as increasing W3=W1. It was also made clear

that increasing either water superficial velocity or gas

superficial velocity in inlet causes fluctuation more in-

tensive while inlet flow pattern is churn flow.

This paper will focus on the nonlinear dynamic

analysis of differential pressure DP13 with the extraction

ratio (W3=W1) at 0.5 and the inlet flow pattern on bubble

flow; churn flow and annular flow, respectively. Com-

plete symmetry of the system is assumed to neglect the

oscillation due to phase separation.

3. Analysis and discussions

3.1. Data range

The apparatus was operated under the following

condition: inlet superficial gas velocities, JG, ranging
between 0.03 and 9.4 m/s, inlet superficial liquid velo-

cities, JL, ranging between 0.09 and 0.47 m/s, and mass

extraction rates, W3=W1, from 0 to 1. All tests were

carried out at nominally ambient pressure and room

temperature.

All of the inlet conditions are plotted on the flow

pattern map of Mishima–Ishii [16] in Fig. 5, as the inlet

tube of the T-junction is vertical. As can be seen, some

of the flow patterns observed in the present investigation

are not consisted with the classifications calculated by

the model of Mishima–Ishii [16]. The reasons are con-
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Fig. 5. Inlet conditions shown in the map of Mishima–Ishii

[16].
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sidered as follows: the effect of the geometry of the

system, i.e. the geometric difference between a T-junc-

tion and a straight tube, the distance from observation

location to the mixing room and the method for mixing

two phases.

3.2. Chaotic analysis

Fig. 6 illustrates that the pressure drop fluctuations

are not periodic. They are analyzed by various methods

as follows.

3.2.1. Power spectral density

PSD is usually employed to extract the periodic fea-

ture of a signal. Matsui [17,18] calculated the PSD and

possibility density function (PDF) of transient pressure

drop signal to identify flow pattern of two-phase flow.

Franca et al. [19] and Cai et al. [20] employed PSD and

other fractal techniques for flow pattern identification as

well. In the present work, the PSD of the differential

pressure fluctuation, computed by the fast Fourier

transform (FFT) technique, was used to distinguish two-

phase flow through a T-junction between periodic and

chaotic motion. If the power spectrum is continuous and

asymptotic, the motion can be considered as chaotic

[20]. Some typical results are shown in Fig. 7. It can be

seen that there is no dominant frequency at all three

PSD graphs. Obviously, it is asymptotic and continuous

and broad-banded. So it is reasonable to consider the

system as chaotic or random.

3.2.2. Pseudo-phase-plane trajectories

Another way to depict a system dynamic charac-

teristic is to reconstruct the attractor of the selected

parameter in a phase space. Not knowing the number

of the freedom of the two-phase flow splitting at the

T-junction, pseudo-phase-plane (embedding space) can

be reconstructed with the time delay method. For the

given scalar time series of the parameter, one can re-

construct D-dimensional vectors from the following

equation:

xi ¼ fxðtiÞ; xðti þ sÞ; xðti þ 2sÞ; . . . ; x½ðti þ ðD	 1Þs
g
ð1Þ

where D is the embedding dimension, and s is the time

delay. The reconstructed geometrical structure has the

same dimensional characteristics with the original tra-

jectories.

Fig. 8(A–C) presents pseudo-phase-plane trajectories

of the selected differential pressure for inlet bubbly flow,

churn flow and annular flow. It is obvious from this

three inlet flow patterns that the behavior of two-phase

flow through a T-junction is chaotic. Structure of the

attractor created from inlet annular flow seems to be

more complex.

3.2.3. Hurst exponent

If the degree of freedom of a system is investigated, it

is usually assumed that the changes occurring in the

system are of random character (Brownian motion).

Examining changes of water state in the man-made lakes

‘‘Hurst’’ dividing the range fluctuations by standard
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Fig. 6. Typical time series of DP13.
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deviation of the observation, he established the non-

dimensional H exponent. This kind of analysis is called

the rescaled range analysis R=S [21].

Hurst exponent is determined as follows. The mea-

sured data (in the form of samples) are divided into in-

tervals of constant number of points equal to N . For
each of the intervals the following series is defined

Tj ¼
XN

j¼1
ðxj 	 �xxN Þ ð2Þ

For the series (2) in each interval, the R that is called

range R ¼ maxðTiÞ 	minðTiÞ and standard deviation S
are calculated. R=S characteristic for the whole time

series is determined as an average of R=S calculated for

all intervals of N length.

The slope of tangent to lnðR=SÞ in the function lnðNÞ
gives the value of H exponent. If N number contains too

many measured points, the process resembles the ran-

dom motion (the long-term memory, i.e. the memory

between succeeding intervals disappears). In this case the

slope of the curve changes. For the signals of stochastic

character H ¼ 0:5 [20,21], for the chaotic system, the

H > 0:5. Border point N � between the area where the

H > 0:5 and the area where H ¼ 0:5 corresponds with

the boundary of the natural period of a physical system.

Fig. 7. Typical PSD of DP13 at various inlet flow pattern. (A)

Inlet bubble flow, JG1 ¼ 0:19 m/s, JL1 ¼ 0:14 m/s; (B) inlet

churn flow, JG1 ¼ 1:41 m/s, JL1 ¼ 0:14 m/s; (C) inlet annular

flow, JG1 ¼ 4:71 m/s, JL1 ¼ 0:14 m/s.

Fig. 8. Typical pseudo-phase-plane trajectories (A) for inlet

bubble flow, JG1 ¼ 0:19 m/s, JL1 ¼ 0:14 m/s; (B) inlet churn

flow, JG1 ¼ 1:41 m/s, JL1 ¼ 0:14 m/s; (C) inlet annular flow,

JG1 ¼ 4:71 m/s, JL1 ¼ 0:14 m/s.
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Fig. 9 shows the rescaled range lnðR=SÞ plotted

against lnðNÞ for different flow patterns. The slope of the

straight lines, drawn arbitrarily close to the saturation

value for the rescaled range curve, indicates the deter-

ministic nature of the flow. The values of the Hurst ex-

ponent H ranged from 0.72 to 0.87 for inlet bubble flow,

from 0.7 to 0.97 for inlet churn flow, approximately

constant 0.67 for inlet annular. Fig. 10 shows Hurst

exponent (H ) versus gas superficial velocity at each test

run. As can be seen, all of the Hurst dimensions are

larger than 0.5. It suggests that the behavior of the

system has deterministic chaos character. The value of

Hurst exponent ðHÞ indicates that the behavior of sys-
tem is different from stochastic behavior. Obtained re-

sults show that differential pressure fluctuations in case

of annular flow are closer to stochastic behavior than

other kinds of flows.

3.2.4. Largest Lyapunov exponents

Lyapunov exponents, the average exponential rates

of divergence or convergence of nearby orbits in phase

space, have been shown to be the most useful dynamic

diagnostic tool in quantifying chaotic systems [20].

For the measured data in the form of time series:

fxng ¼ fx1; x2; . . . ; xng ð3Þ

determination of all Lyapunov exponents is not possi-

ble. It is, however, possible to determine the value of the

largest Lyapunov exponent. In this case, on the attractor

immersed in D dimensional space, two closest points

situating at a distance of at least one orbiting period one

from another, are selected. The distance between the

points is represented by LðtjÞ. Thus, the distance of the
selected points after the passage of some evolution time

is calculated, and the new distance of the pair of points is

Lðtjþ1Þ. The largest Lyapunov exponent is calculated

according to the formula [21]:

k1 ¼
1

t

Xm

j¼1
log2

Lðtjþ1Þ
LðtjÞ

ð4Þ

where m is the number of point pairs examined, t the
time of evolution.

The largest Lyapunov exponent can be determined

when such characteristics of attractor as fractal dimen-

sion, average orbiting time and time-delay are known.

For a long time series, the results of calculation of k1
approach stable value, being an estimation of the largest

value of Lyapunov exponent. The calculation of the

largest Lyapunov exponent is possible only if the fractal

dimension of the attractor is known.

While kl > 0, the motion is chaotic; while kl ¼ 0, the

motion is regular. The value of kl is a criterion for chaos.

Fig. 11(A–C) shows largest Lyapunov exponents for

bubble flow; churn flow and annular flow. The expo-

nents are positive, which provides further evidence of

chaotic behavior of two-phase flow through a T-junc-

tion.

Fig. 9. Typical Hurst exponents ðHÞ of various inlet flow pat-

terns. (A) Inlet bubble flow, JG1 ¼ 0:19 m/s, JL1 ¼ 0:14 m/s; (B)

inlet churn flow, JG1 ¼ 0:19 m/s, JL1 ¼ 1:41 m/s; (C) inlet an-

nular flow, JG1 ¼ 4:71 m/s, JL1 ¼ 0:14 m/s.

Fig. 10. Gas superficial velocity versus Hurst exponent ðHÞ at
each test run.
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The value of largest Lyapunov exponent describes

the rate of information loss about the system. The cal-

culated value of 1=kl½bit=bit=s
 � 1=6:55 ¼ 0:15 [s] (in

case of bubble flow) shows how long a initial condition

influences the flow. The value of the largest Lyapunov

exponent is also a measure of chaos level in the system.

Results of calculations indicate that the rate of infor-

mation loss is bigger in the churn flow. In other words,

we can say that the value of the largest Lyapunov ex-

ponent is a measure of correlations between the two-

phase flow in the vertical inlet pipe and horizontal

branch pipe. Results of calculation indicate that when

the flow pattern upstream changes to churn flow, the

two-phase flow in vertical and horizontal pipe becomes

independent. It is consistent with the observation very

well since the flow pattern in horizontal tube is stratified-

wavy flow.

3.2.5. Correlation dimensions

The trajectories of the chaotic system in the phase

space do not form any single geometrical object such as

circle or torus, but form objects called strange attractors

of the structure resembling the one of a fractal. One of

the essential characteristics of fractals is their dimen-

sion [21,23–25]. For experimental data, the correlation

dimension D is defined by the following expression [22]:

D ¼ lim
l!0

1

ln l
lnCðlÞ ð5Þ

CðlÞ ¼ lim
N!1

1

N 2

X

i;j

Hðl	 jxi 	 xjjÞ ð6Þ

where H is the Heaviside�s step function determines the

number of attractor�s point pairs of the distance shorter
than l. Fractal dimension is calculated by determining

the value of the slope of the regression line crossing a

middle region of the curve C [23]. For the stochastic

signal the fractal dimension increases with the increase

of the embedding dimension. If the signal examined is of

deterministic chaos character, then the value of a slope

of the regression line approaches constant value D. The

Fig. 11. Typical largest Lyapunov exponents of various inlet flow

patterns. (A) Inlet bubble flow, JG1 ¼ 0:19 m/s, JL1 ¼ 0:14 m/s;

k ¼ 6:55, (B) inlet churn flow, JG1 ¼ 1:41m/s, JL1 ¼ 0:14m/s; k ¼
8:69, (C) inlet annular flow, JG1 ¼ 4:71 m/s, JL1 ¼ 0:14 m/s;

k ¼ 7:78.

Fig. 12. Typical correlation dimension of various inlet flow

patterns. (A) Inlet bubble flow, JG1 ¼ 0:19 m/s, JL1 ¼ 0:14 m/s;

(B) inlet churn flow, JG1 ¼ 1:41 m/s, JL1 ¼ 1:41 m/s; (C) inlet

annular flow, JG1 ¼ 4:71 m/s, JL1 ¼ 0:14 m/s.
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value determines the correlation dimension of the at-

tractor investigated. Calculation of the correlation di-

mension is being done for the embedding dimension

M > 2Dþ 1, where D is the correlation dimension of the

attractor considered [24].

Fractal dimension, including the capacity dimension,

correlation dimension, and information dimension,

provides a measure of the minimum degree of freedom

and thus provides a quantitative measure of the com-

plexity of the phenomena [26,27]. The estimated corre-

lation dimensions versus the embedding dimensions for

inlet bubble flow; churn flow, and annular flow are

shown in Fig. 12. It indicates that the system is more

complex than at inlet bubble flow and annular flow than

at inlet churn flow. Fig. 13 shows correlation dimensions

versus gas superficial velocity of all tests run with liquid

superficial velocity JL1 ¼ 0:14 m/s. It exhibits that two-

phase flow splitting at a T-junction is not a random

oscillation but a deterministic chaotic motion.

4. Summary

Several measurement methods that are used in chaos

theory were employed to analyze differential pressure

fluctuation of two-phase flow through a T-junction.

These methods included: PSD function, Hurst exponent,

the largest Lyapunov exponents, correlation dimensions

and pseudo-phase-plane trajectories. Three kinds of inlet

flow patterns including bubble flow, churn flow and

annular flow, were investigated. It is demonstrated that

two-phase flow splitting at a T-junction is a complicated

nonlinear dynamic system by the analysis on time series

of differential pressure. Namely, PSD is asymptotic and

continuous and band-broad indicates the existence of

chaotic behavior. The Hurst exponent is larger than 0.5

showing that the flow behaviors studied are chaotic but

random. The value of the lagerst Lyapunov exponent

allows identifying the loss of correlation between the

dynamics of two-phase flow in the vertical and hori-

zontal pipes. Correlation dimensions quantify the iden-

tified chaotic behavior. Thus, this study provided new

viewpoints to well understand the behaviors of two-

phase flow through a T-junction. It will also be signifi-

cant for establishing valid models in the future that are

different from conventional ones.
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